MicroRNA-378 controls classical brown fat expansion to counteract obesity
نویسندگان
چکیده
Both classical brown adipocytes and brown-like beige adipocytes are considered as promising therapeutic targets for obesity; however, their development, relative importance and functional coordination are not well understood. Here we show that a modest expression of miR-378/378* in adipose tissue specifically increases classical brown fat (BAT) mass, but not white fat (WAT) mass. Remarkably, BAT expansion, rather than miR-378 per se, suppresses formation of beige adipocytes in subcutaneous WAT. Despite this negative feedback, the expanded BAT depot is sufficient to prevent both genetic and high-fat diet-induced obesity. At the molecular level, we find that miR-378 targets phosphodiesterase Pde1b in BAT but not in WAT. Indeed, miR-378 and Pde1b inversely regulate brown adipogenesis in vitro in the absence of phosphodiesterase inhibitor isobutylmethylxanthine. Our work identifies miR-378 as a key regulatory component underlying classical BAT-specific expansion and obesity resistance, and adds novel insights into the physiological crosstalk between BAT and WAT.
منابع مشابه
MicroRNA-455 regulates brown adipogenesis via a novel HIF1an-AMPK-PGC1α signaling network.
Brown adipose tissue (BAT) dissipates chemical energy as heat and can counteract obesity. MicroRNAs are emerging as key regulators in development and disease. Combining microRNA and mRNA microarray profiling followed by bioinformatic analyses, we identified miR-455 as a new regulator of brown adipogenesis. miR-455 exhibits a BAT-specific expression pattern and is induced by cold and the brownin...
متن کاملMicroRNA-455 regulates brown adipogenesis via a novel HIF1an-AMPK-PGC1a signaling network
Brown adipose tissue (BAT) dissipates chemical energy as heat and can counteract obesity. MicroRNAs are emerging as key regulators in development and disease. Combining microRNA and mRNA microarray profiling followed by bioinformatic analyses, we identified miR-455 as a new regulator of brown adipogenesis. miR-455 exhibits a BAT-specific expression pattern and is induced by cold and the brownin...
متن کاملAblation of PPARγ in subcutaneous fat exacerbates age‐associated obesity and metabolic decline
It is well established that aging is associated with metabolic dysfunction such as increased adiposity and impaired energy dissipation; however, the transcriptional mechanisms regulating energy balance during late life stages have not yet been fully elucidated. Here, we show that ablation of the nuclear receptor PPARγ specifically in inguinal fat tissue in aging mice is associated with increase...
متن کاملMicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16.
Brown adipose tissue (BAT) is an energy-dispensing thermogenic tissue that plays an important role in balancing energy metabolism. Lineage-tracing experiments indicate that brown adipocytes are derived from myogenic progenitors during embryonic development. However, adult skeletal muscle stem cells (satellite cells) have long been considered uniformly determined toward the myogenic lineage. Her...
متن کاملLkb1 controls brown adipose tissue growth and thermogenesis by regulating the intracellular localization of CRTC3
Brown adipose tissue (BAT) dissipates energy through Ucp1-mediated uncoupled respiration and its activation may represent a therapeutic strategy to combat obesity. Here we show that Lkb1 controls BAT expansion and UCP1 expression in mice. We generate adipocyte-specific Lkb1 knockout mice and show that, compared with wild-type littermates, these mice exhibit elevated UCP1 expression in BAT and s...
متن کامل